Scaling effects on the free surface backward facing step flow

نویسندگان

چکیده

A set of large eddy simulations for the free surface backward facing step (FSBFS) are carried out to study wave formation behind step. The volume-of-fluid ghost fluid method is employed capture surface. Previous studies have indicated that physics depend on draught-based Froude number (Fr). For small Fr, rear face (transom) becomes wet, while separates smoothly from transom. Close a critical Fr separating wet and dry transoms, both conditions may occur. Here, we critical, based classification with three different inflow boundary layer profiles ( ReL=1,2,3×106). = 1.75 (wet conditions), observe weak dependence ReL. proper orthogonal decomposition velocity field at shows coherent vortex street forming beneath At 2.66 (critical an increase in ReL results decrease wavelength pronounced gas entrainment due breaking. 3.17 (dry also shorter increased Further, conditions, breaking noticed occur higher ReL, waves not observed smallest studied Based results, conclude shape FSBFS cannot be characterized by alone.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse flow regions in three-dimensional backward-facing step flow

Laser-Doppler velocity measurements adjacent to the bounding walls of three-dimensional (3-D) backward-facing step flow are performed for the purpose of mapping the boundaries of the reverse flow regions that develop in this geometry (adjacent to the sidewalls, the flat wall and the stepped wall) as a function of the Reynolds number. The backward-facing step geometry is configured by a step hei...

متن کامل

Turbulent separated convection flow adjacent to backward-facing step—effects of step height

Simulations of turbulent convection flow adjacent to a two-dimensional backward-facing step are presented to explore the effects of step height on turbulent separated flow and heat transfer. Reynolds number and duct’s height downstream from the step are kept constant at Re0 = 28,000 and H = 0.19 m, respectively. Uniform and constant heat flux of qw = 270 W/m 2 is specified at the stepped wall d...

متن کامل

Three-dimensional instability in flow over a backward-facing step

Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The criti...

متن کامل

Simulation of Steady, Laminar Flow Over a Backward-Facing Step

A 2D Navier-Stokes solver was developed to simulate steady,laminar flow over a backward-facing step of height h. The step expansion ratio=1/2 and the flow at the step was assumed to be fully developed, laminar channel flow. The Reynolds number for this flow was defined as Re=Uh/ν. The 2D incompressible Navier-Stokes equations was solved in generalized curvilinear coordinates using artificial co...

متن کامل

LES/FMDF of premixed methane/air flow in a backward-facing step combustor

In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features are obtained by solving the Eulerian filtered compressible transport equations while the species are predicted by using the filtered mass density function method (FMDF).  Some scalar f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2021

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0045520